Continuity from Below
Let (X, A, 1) be a measure space with {E,,}52; C A. IF E; C E;, for each i € N, then

1 <U En> = lim p(Ey)

n=1

Proof. First observe that if u(E, ) = oo for some n € N then monotonicity shows that

1 (U En) = oo = lim p(Ey,).
n=1

As such, we may assume that u(E,) < oo for all n € N. Let F; := E; and for eachn > 21let F,, = E,\E, 1.
Then {F,}°2, is a pairwise disjoint sequence with E,, = (J;_, F;. Moreover,

/L(Fn) = .U(En) - /L(En—l)

for n > 1. It follows that

Finally, we have

Continuity from Above (Statement only)
Let (X, A, 1) be a measure space with {E,,}5°, C A. If u(E;) < co and if E; 1 C E; for each i € N, then

1 (ﬂ E) = lim u(E,)

n=1

Caratheodory’s Theorem (Statement only)

Let u* be an outer measure on X. The set B of p*-measurable sets in P(X) is a c—algebra and if p = p*|
B

then p is a complete measure on .
Caratheodory Extension Theorem

Let u be a measure on an algebra A C P(X). Let u* be the outer measure generated by u. Let A* be the
o—algebra of ;* measurable sets. Then A C A* and i extends to a measure j on A*.

Proof. We only need to show that A C A*. Let E € Aand let A C X. As before, we can assume that
1*(A) < oo and that we need only show that

p(A) > (AN E) + p' (AN E°).



Let € > 0 and choose {F}, },cn C A such that

AC|JF, and ) u(F,) < pf(A) +e
n=1 n=1

Note that - -
ANEC UEan and ANE°C UECﬁFn.

n=1 n=1

It follows that - -
PW(ANE) <Y u(ENF,) and p*(ANE°) Z (E°NF,)
n=1 n=1

Hence

PWANE) +p (ANES) < Y wENFE,)+Y wENE,
n=1 n=1

= S uE) < pt(A) +e

—

Since ¢ was arbitrary, we have y*(ANE) + p*(ANE) < p*(A). The remainder of the theorem follows from
Caratheodory’s Theorem. O

Hahn Extension Theorem (Statement only)

Suppose that p is a o—finite measure on an algebra .A. Then there is a unique extension /i to a measure on
A*, the o—algebra of all y*—measurable sets.

Monotone Convergence Theorem (only the 1st version)

If {f,}52, C MT(X,A) is such that f,, < f,41 forall n > 1 and lim,,_, . fn(x) = f(z) then

/fd,u: lim /fnd,u
n—oo
Proof. We know that f € M*(X, A) and

[todi [ fridu< [ 1 an

Hence lim,, o [ fn dpp < [ f dpu. Conversely, let 0 < o < 1 and let ¢ € MT (X, A) be simple with 0 < ¢ < f.
Foreachn € N, let A, = {z € X|f,(z) > ap(z)}. Then A,, € A, A, C A,4; and X = J;7 | A,,. We have

/A’ wdué/ fndué/fndu

n

By the Monotone Convergence Theorem for measures, [ ¢ du = lim,, o [ A, @dp since A\(E) = || pPduisa

measure. Therefore
a/g@du:lim/ oupduglim/fnd,u
n—o0 An n— o0

Since 0 < a < 1 was arbitrary, we can take o — 1~ and conclude
/wdué lim [ f, du
n—o0

Thus
/fdu= sup /@dué lim /fndu
0<e<f n—oo

and the result is established. O



Fatou’s Lemma (Statement only)
If{fn}22; C M (X, A) then
/lim inf f, dp < lim inf/fn du
n— o0

n—roo

Lebesgue Dominated Convergence Theorem

Let {f,}22, C L(X,A,p). Assume that f = lim, . f, p—a.e. If there exists an integrable function
g € L(X, A, ) such that | f,,| < g for all n € N, then f is integrable and

/fdu:nlgngo/fndu

Proof. By redefining f,, f if necessary, we may assume that f = lim,,_, f,, everywhere. This shows that f
is measurable. We have |f| < g, so |f| is integrable. Hence f is also integrable.

Notice that g + f,, > 0. By Fatou’s Lemma,

/gdu+/fdu = /(g+f)du

= liminf/(ngfn)du
n—oo
< /liminf(g—i-fn)dy
n—oo
= /gd,u—f—liminf/fn du
n—oo
It follows that

/f dp < liminf/fndu.
n—oo

On the other hand, g — f,, > 0, so by arguing as above, we see that

—/f dp < liminf/—fndu = —limsup/fn dp
n—oo

n—oo

and as such

1imsup/fn dp < /fdu.

n—r oo

Therefore [ f du = lim,, oo [ fr dp. O

Completeness for L, when 1 <p < o0

Let 1 < p < oo. Then (L,(X, A, u),| -||p) is a Banach space.

Proof. Let {f,}r2, C L,(X, A, 1) be a Cauchy sequence. We can find a subsequence {g;} of {f,} such that
llgk+1 — gkll, < 1/2%. Define, for all z € X,

9(@) = g1 (@) + D lg+1(x) = g(2)]
k=1



Then g € M™ (X, A), and by Fatou’s Lemma,
n P
/Igl” duﬁlggioréf/ <|91|+kz:1|9k+1 _9k|> dps.
Next, by Minkowski’s Inequality, we get
1/p n
( [1ar du) <t ol + 3 s = 0l < ol +1 < o0

Let E = {z € X : g(z) < co}. Then it follows from the above calculations that ;(X\E) = 0. Hence

[e ]
191(2)] + D lgk+1(x) — gr ()|
k=1
converges to a finite number py—a.e. Let

@) + 300 gk (@) —gr(z) zeEE
f(z) = {O b 2 ¢ E

Note that since the series is telescoping, this actually shows that g, — f p—a.e. We also notice that |g (z)| <
g(x) for all x € X. The Lebesgue Dominated Convergence Theorem (LDCT) shows us that

/Iflp dp = klggo/lgklpdu < / lg[Pdp < o0

Therefore f € L,(X, A, u). Since | f| < g, we have |f — gx| < 2|g| and again by the LDCT, 0 = limy_,o0 [ |f —
gr|Pdu since g, — f a.e. Therefore, the subsequence {g;} converges to f in L,(X, A, ). It follows that { f,,}
converges to f in L,(X, A, p). O

Egoroff’s Theorem (Statement Only)

Let (X, A, ) be a finite measure space and let { f,,} be a sequence of measurable real-valued functions which
converge almost everywhere to a real-valued measurable function f. Then f,, — f almost uniformly.

Hahn Decomposition Theorem (Statement Only)

Let u be a signed measure on (X,.A). Then there is a positive set A € 4 and a negative set B € A so that
X=AUuBand AnB=0.

Jordan Decomposition Theorem for Signed Measures (Statement only)

Let 11 be a signed measure on (X,.4). Then there exist two mutually singular positive measures p and p~
such that

po=pt —p”
Furthermore, if A\ and v are two positive measures with
L=A—v

the for each F € A we have
AE) > p*(E) and v(E)> = (E)

Finally, if A L v,then A\ = T and v = ™.

Radon-Nikodym Theorem (Statement Only)



Let A and i be o—finite measures on (X, .4). Suppose that ) is absolutely continuous with respect to u. Then
there exists f € MT(X, .A) such that

\E) = [ 1
E
for every E € A. Moreover f is uniquely determined p—almost everywhere.

Lebesgue Decomposition Theorem (Proof of Existence Only)

Let A\ and u be o—finite measures on (X, .4). Then there exists two measures A; and s on (X, .A) such that
A=A+ X, A1 L pand Ay <« u. Moreover, these measures are unique.

Proof. Let v = X + p. Then clearly v is o—finite, A < v and p < v. It follows that there are functions
f,9 € MT (X, A) such that

)\(E):/Efdu and M(E):/Egdl/

for every FE € A. Let
A={reX:g(xz)=0} and B={zxecX:g(zx)> 0}

Then { A, B} is a partition of X. Let
M(E)=AMENA) and X(E)=AENB)

for every single E € A. Clearly A = A\; + \o. Since

M(A):/Agdy:/AOdu

we have \; L p. If u(E) = 0 then [, g dv = 0 so g(z) = 0 for v—almost everywhere in E. It follows that
v(E N B) = 0 and hence that
X(E)=AXENB)=0

since A < v. That is \s < p. O
Lebesgue’s Differentiation Theorem (Statement Only)

Let f : [a,b] — R be increasing. Then f is differentiable almost everywhere on [a,b], f’ is measurable,
integrable and

fdm < f(b) — f(a)

[a,b]

FTC for Absolutely Continuous Functions (Statement Only)

A function F: [a, b] — R is of the form

for some integrable function g if and only if F' is absolutely continuous. Moreover, in this case F'(z) = g(z)
a.e.

Riesz Representation Theorem I for L,(X, 1)* where 1 < p < co (Statement only)

Let I' € Ly (X, p)* where 1 < p < oo and pu is o—finite. Then if § + 1 = 1, there exists a unique g € Ly(X, u)*
such that

I(f) = /X fgdu=by(f)



Moreover, ||T|| = ||gll4-
Riesz Representation Theorem II for L, (X, 1)* where 1 < p < co (Statement only)

Let T € Ly (X, )" where 1 < p < oo. Then if J + = 1, there exists a unique g € Ly(X, ¢1)* such that

I'(f) = / fg dp
X
forall f € L,(X, u). Moreover, |T']| = ||gll4-
Riesz Representation Theorem for C([a, b])* (Statement only)

Let T € C([a, b])*. Then there exists a unique finite signed measure x on the Borel subsets of [a, b] such that

I'(f) = fdu

[a,b]
for each f € C([a,b]). Moreover, ||T'|| = |u|([a, b]).
Product Measure Theorem (Statement only)

Let (X, A, u) and (Y, B, \) be measure spaces. Then there exists a measure = on (X x Y, A x B) such that
m(A x B) = p(A)A(B). Moreovey, if 1 and A are o—finite, then 7 is unique and o—finite.

In the case where p and A are o-finite, we denote the uniquely obtained measure as
T=p XA
and call the measure the product of i and A.
Tonelli’s Theorem (Statement Only)
Let (X, A, u) and (Y, B, \) be o—finite measure spaces. Let F': Z = X xY + [0, co| be measurable. Then the

functions defined by f(x) = [, F, dXand g(y) = [, FY dpare measurable and [ f du = [, F dr = [, g d\
where 7 = 1 x A. That is to say,

/X (/Y F(x,y)d/\(y)) du(z) = /ZFdar = [Y (/X F(:z:,y)d'u(z)> d\(y)

Fubini’s Theorem (Statement Only)
Let (X, A, 1) and (Y, B, A) be o—finite measure spaces and let 7 = p x A. If F' is integrable with respect to =

on Z = X x Y, then the extended real valued functions defined almost everywhere by f(z) = [, F, dA and
9(y) = [y FY dp have finite integrals and [ f du = [, F dw = [,, g d\. That is to say,

/X (/Y F(x,y)d/\(y)) du(z) = /ZFdar = /Y (/X F(:z:,y)d'u(z)> d\(y)



