
Continuity from Below

Let (X,A, µ) be a measure space with {En}∞n=1 ⊆ A. IF Ei ⊆ Ei+1 for each i ∈ N, then

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ(En)

Proof. First observe that if µ(En) =∞ for some n ∈ N then monotonicity shows that

µ

( ∞⋃
n=1

En

)
=∞ = lim

n→∞
µ(En).

As such, we may assume that µ(En) <∞ for all n ∈ N. Let F1 := E1 and for each n ≥ 2 let Fn = En\En−1.
Then {Fn}∞n=1 is a pairwise disjoint sequence with En =

⋃n
i=1 Fi. Moreover,

µ(Fn) = µ(En)− µ(En−1)

for n > 1. It follows that
m∑

n=1

µ(Fn) = µ(Em).

Finally, we have

µ

( ∞⋃
n=1

En

)
= µ

( ∞⋃
n=1

Fn

)
=

∞∑
n=1

µ(Fn) = lim
m→∞

m∑
n=1

µ(Fn) = lim
m→∞

µ(Em).

Continuity from Above (Statement only)

Let (X,A, µ) be a measure space with {En}∞n=1 ⊆ A. If µ(E1) <∞ and if Ei+1 ⊆ Ei for each i ∈ N, then

µ

( ∞⋂
n=1

En

)
= lim

n→∞
µ(En)

Caratheodory’s Theorem (Statement only)

Let µ∗ be an outer measure on X. The set B of µ∗-measurable sets in P(X) is a σ−algebra and if µ = µ∗
∣∣∣
B

,

then µ is a complete measure on B.

Caratheodory Extension Theorem

Let µ be a measure on an algebra A ⊆ P(X). Let µ∗ be the outer measure generated by µ. Let A∗ be the
σ−algebra of µ∗ measurable sets. Then A ⊆ A∗ and µ extends to a measure µ̄ on A∗.

Proof. We only need to show that A ⊆ A∗. Let E ∈ A and let A ⊆ X. As before, we can assume that
µ∗(A) <∞ and that we need only show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec).

1



Let ε > 0 and choose {Fn}n∈N ⊂ A such that

A ⊆
∞⋃

n=1

Fn and
∞∑

n=1

µ(Fn) ≤ µ∗(A) + ε.

Note that

A ∩ E ⊆
∞⋃

n=1

E ∩ Fn and A ∩ Ec ⊆
∞⋃

n=1

Ec ∩ Fn.

It follows that

µ∗(A ∩ E) ≤
∞∑

n=1

µ(E ∩ Fn) and µ∗(A ∩ Ec) ≤
∞∑

n=1

µ(Ec ∩ Fn)

Hence

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤
∞∑

n=1

µ(E ∩ Fn) +

∞∑
n=1

µ(Ec ∩ Fn)

=

∞∑
n=1

µ(Fn) ≤ µ∗(A) + ε

Since ε was arbitrary, we have µ∗(A ∩E) + µ∗(A ∩E) ≤ µ∗(A). The remainder of the theorem follows from
Caratheodory’s Theorem.

Hahn Extension Theorem (Statement only)

Suppose that µ is a σ−finite measure on an algebra A. Then there is a unique extension µ̄ to a measure on
A∗, the σ−algebra of all µ∗−measurable sets.

Monotone Convergence Theorem (only the 1st version)

If {fn}∞n=1 ⊆M+(X,A) is such that fn ≤ fn+1 for all n ≥ 1 and limn→∞ fn(x) = f(x) then�
f dµ = lim

n→∞

�
fn dµ

Proof. We know that f ∈M+(X,A) and�
fn dµ ≤

�
fn+1dµ ≤

�
f dµ

Hence limn→∞
�
fn dµ ≤

�
f dµ. Conversely, let 0 < α < 1 and let ϕ ∈M+(X,A) be simple with 0 ≤ ϕ ≤ f .

For each n ∈ N, let An = {x ∈ X|fn(x) ≥ αϕ(x)}. Then An ∈ A, An ⊆ An+1 and X =
⋃∞

n=1An. We have�
An

αϕ dµ ≤
�
An

fn dµ ≤
�
fn dµ

By the Monotone Convergence Theorem for measures,
�
ϕ dµ = limn→∞

�
An

ϕdµ since λ(E) =
�
E
ϕ dµ is a

measure. Therefore
α

�
ϕ dµ = lim

n→∞

�
An

αϕ dµ ≤ lim
n→∞

�
fn dµ

Since 0 ≤ α < 1 was arbitrary, we can take α→ 1− and conclude�
ϕ dµ ≤ lim

n→∞

�
fn dµ

Thus �
f dµ = sup

0≤ϕ≤f

�
ϕ dµ ≤ lim

n→∞

�
fn dµ

and the result is established.
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Fatou’s Lemma (Statement only)

If {fn}∞n=1 ⊆M+(X,A) then �
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

�
fn dµ

Lebesgue Dominated Convergence Theorem

Let {fn}∞n=1 ⊆ L(X,A, µ). Assume that f = limn→∞ fn µ−a.e. If there exists an integrable function
g ∈ L(X,A, µ) such that |fn| ≤ g for all n ∈ N, then f is integrable and

�
f dµ = lim

n→∞

�
fn dµ

Proof. By redefining fn, f if necessary, we may assume that f = limn→∞ fn everywhere. This shows that f
is measurable. We have |f | ≤ g, so |f | is integrable. Hence f is also integrable.

Notice that g + fn ≥ 0. By Fatou’s Lemma,
�
g dµ+

�
f dµ =

�
(g + f)dµ

= lim inf
n→∞

�
(g + fn)dµ

≤
�

lim inf
n→∞

(g + fn)dµ

=

�
g dµ+ lim inf

n→∞

�
fn dµ

It follows that �
f dµ ≤ lim inf

n→∞

�
fndµ.

On the other hand, g − fn ≥ 0, so by arguing as above, we see that

−
�
f dµ ≤ lim inf

n→∞

�
−fndµ = − lim sup

n→∞

�
fn dµ

and as such
lim sup
n→∞

�
fn dµ ≤

�
f dµ.

Therefore
�
f dµ = limn→∞

�
fn dµ.

Completeness for Lp when 1 ≤ p <∞

Let 1 ≤ p <∞. Then (Lp(X,A, µ), ‖ · ‖p) is a Banach space.

Proof. Let {fn}∞n=1 ⊆ Lp(X,A, µ) be a Cauchy sequence. We can find a subsequence {gk} of {fn} such that
‖gk+1 − gk‖p ≤ 1/2k. Define, for all x ∈ X,

g(x) = |g1(x)|+
∞∑
k=1

|gk+1(x)− gk(x)|
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Then g ∈M+(X,A), and by Fatou’s Lemma,

�
|g|p dµ ≤ lim inf

n→∞

� (
|g1|+

n∑
k=1

|gk+1 − gk|

)p

dµ.

Next, by Minkowski’s Inequality, we get(�
|g|p dµ

)1/p

≤ lim inf
n→∞

‖g1‖p +

n∑
k=1

‖gk+1 − gk‖p ≤ ‖g1‖p + 1 <∞

Let E = {x ∈ X : g(x) <∞}. Then it follows from the above calculations that µ(X\E) = 0. Hence

|g1(x)|+
∞∑
k=1

|gk+1(x)− gk(x)|

converges to a finite number µ−a.e. Let

f(x) =

{
g1(x) +

∑∞
k=1 gk+1(x)− gk(x) x ∈ E

0 x /∈ E

Note that since the series is telescoping, this actually shows that gk → f µ−a.e. We also notice that |gk(x)| ≤
g(x) for all x ∈ X. The Lebesgue Dominated Convergence Theorem (LDCT) shows us that

�
|f |p dµ = lim

k→∞

�
|gk|pdµ ≤

�
|g|pdµ <∞

Therefore f ∈ Lp(X,A, µ). Since |f | ≤ g, we have |f − gk| ≤ 2|g| and again by the LDCT, 0 = limk→∞
�
|f −

gk|pdµ since gk → f a.e. Therefore, the subsequence {gk} converges to f in Lp(X,A, µ). It follows that {fn}
converges to f in Lp(X,A, µ).

Egoroff’s Theorem (Statement Only)

Let (X,A, µ) be a finite measure space and let {fn} be a sequence of measurable real-valued functions which
converge almost everywhere to a real-valued measurable function f . Then fn → f almost uniformly.

Hahn Decomposition Theorem (Statement Only)

Let µ be a signed measure on (X,A). Then there is a positive set A ∈ A and a negative set B ∈ A so that
X = A ∪B and A ∩B = ∅.

Jordan Decomposition Theorem for Signed Measures (Statement only)

Let µ be a signed measure on (X,A). Then there exist two mutually singular positive measures µ+ and µ−

such that
µ = µ+ − µ−

Furthermore, if λ and ν are two positive measures with

µ = λ− ν

the for each E ∈ A we have
λ(E) ≥ µ+(E) and ν(E) ≥ µ−(E)

Finally, if λ ⊥ ν, then λ = µ+ and ν = µ−.

Radon-Nikodym Theorem (Statement Only)
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Let λ and µ be σ−finite measures on (X,A). Suppose that λ is absolutely continuous with respect to µ. Then
there exists f ∈M+(X,A) such that

λ(E) =

�
E

f dµ

for every E ∈ A. Moreover f is uniquely determined µ−almost everywhere.

Lebesgue Decomposition Theorem (Proof of Existence Only)

Let λ and µ be σ−finite measures on (X,A). Then there exists two measures λ1 and λ2 on (X,A) such that
λ = λ1 + λ2, λ1 ⊥ µ and λ2 � µ. Moreover, these measures are unique.

Proof. Let ν = λ + µ. Then clearly ν is σ−finite, λ � ν and µ � ν. It follows that there are functions
f, g ∈M+(X,A) such that

λ(E) =

�
E

f dν and µ(E) =

�
E

g dν

for every E ∈ A. Let
A = {x ∈ X : g(x) = 0} and B = {x ∈ X : g(x) > 0}.

Then {A,B} is a partition of X. Let

λ1(E) = λ(E ∩A) and λ2(E) = λ(E ∩B)

for every single E ∈ A. Clearly λ = λ1 + λ2. Since

µ(A) =

�
A

g dν =

�
A

0 dν

we have λ1 ⊥ µ. If µ(E) = 0 then
�
E
g dν = 0 so g(x) = 0 for ν−almost everywhere in E. It follows that

ν(E ∩B) = 0 and hence that
λ2(E) = λ(E ∩B) = 0

since λ� ν. That is λ2 � µ.

Lebesgue’s Differentiation Theorem (Statement Only)

Let f : [a, b] 7→ R be increasing. Then f is differentiable almost everywhere on [a, b], f ′ is measurable,
integrable and �

[a,b]

f ′ dm ≤ f(b)− f(a)

FTC for Absolutely Continuous Functions (Statement Only)

A function F : [a, b] 7→ R is of the form

F (x) = F (a) +

� x

a

g(t) dt

for some integrable function g if and only if F is absolutely continuous. Moreover, in this case F ′(x) = g(x)
a.e.

Riesz Representation Theorem I for Lp(X,µ)∗ where 1 ≤ p <∞ (Statement only)

Let Γ ∈ Lp(X,µ)∗ where 1 ≤ p <∞ and µ is σ−finite. Then if 1
p + 1

q = 1, there exists a unique g ∈ Lq(X,µ)∗

such that
Γ(f) =

�
X

fg dµ = φg(f)
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Moreover, ‖Γ‖ = ‖g‖q.

Riesz Representation Theorem II for Lp(X,µ)∗ where 1 < p <∞ (Statement only)

Let Γ ∈ Lp(X,µ)∗ where 1 < p <∞. Then if 1
p + 1

q = 1, there exists a unique g ∈ Lq(X,µ)∗ such that

Γ(f) =

�
X

fg dµ

for all f ∈ Lp(X,µ). Moreover, ‖Γ‖ = ‖g‖q.

Riesz Representation Theorem for C([a, b])∗ (Statement only)

Let Γ ∈ C([a, b])∗. Then there exists a unique finite signed measure µ on the Borel subsets of [a, b] such that

Γ(f) =

�
[a,b]

f dµ

for each f ∈ C([a, b]). Moreover, ‖Γ‖ = |µ|([a, b]).

Product Measure Theorem (Statement only)

Let (X,A, µ) and (Y,B, λ) be measure spaces. Then there exists a measure π on (X × Y,A × B) such that
π(A×B) = µ(A)λ(B). Moreover, if µ and λ are σ−finite, then π is unique and σ−finite.

In the case where µ and λ are σ-finite, we denote the uniquely obtained measure as

π = µ× λ

and call the measure the product of µ and λ.

Tonelli’s Theorem (Statement Only)

Let (X,A, µ) and (Y,B, λ) be σ−finite measure spaces. Let F : Z = X×Y 7→ [0,∞] be measurable. Then the
functions defined by f(x) =

�
Y
Fx dλ and g(y) =

�
X
F y dµ are measurable and

�
X
f dµ =

�
Z
F dπ =

�
Y
g dλ

where π = µ× λ. That is to say,
�
X

(�
Y

F (x, y)dλ(y)

)
dµ(x) =

�
Z

F dπ =

�
Y

(�
X

F (x, y)dµ(x)

)
dλ(y)

Fubini’s Theorem (Statement Only)

Let (X,A, µ) and (Y,B, λ) be σ−finite measure spaces and let π = µ× λ. If F is integrable with respect to π
on Z = X × Y , then the extended real valued functions defined almost everywhere by f(x) =

�
Y
Fx dλ and

g(y) =
�
X
F y dµ have finite integrals and

�
X
f dµ =

�
Z
F dπ =

�
Y
g dλ. That is to say,

�
X

(�
Y

F (x, y)dλ(y)

)
dµ(x) =

�
Z

F dπ =

�
Y

(�
X

F (x, y)dµ(x)

)
dλ(y)
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