Continuity from Below

Let (X, \mathcal{A}, μ) be a measure space with $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$. IF $E_i \subseteq E_{i+1}$ for each $i \in \mathbb{N}$, then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Proof. First observe that if $\mu(E_n) = \infty$ for some $n \in \mathbb{N}$ then monotonicity shows that

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \infty = \lim_{n \to \infty} \mu(E_n).$$

As such, we may assume that $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$. Let $F_1 := E_1$ and for each $n \ge 2$ let $F_n = E_n \setminus E_{n-1}$. Then $\{F_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence with $E_n = \bigcup_{i=1}^n F_i$. Moreover,

$$\mu(F_n) = \mu(E_n) - \mu(E_{n-1})$$

for n > 1. It follows that

$$\sum_{n=1}^{m} \mu(F_n) = \mu(E_m).$$

Finally, we have

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \sum_{n=1}^{\infty} \mu(F_n) = \lim_{m \to \infty} \sum_{n=1}^{m} \mu(F_n) = \lim_{m \to \infty} \mu(E_m).$$

Continuity from Above (Statement only)

Let (X, \mathcal{A}, μ) be a measure space with $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$. If $\mu(E_1) < \infty$ and if $E_{i+1} \subseteq E_i$ for each $i \in \mathbb{N}$, then

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Caratheodory's Theorem (Statement only)

Let μ^* be an outer measure on X. The set \mathcal{B} of μ^* -measurable sets in $\mathcal{P}(X)$ is a σ -algebra and if $\mu = \mu^* \Big|_{\mathcal{B}}$, then μ is a complete measure on \mathcal{B} .

Caratheodory Extension Theorem

Let μ be a measure on an algebra $\mathcal{A} \subseteq \mathcal{P}(X)$. Let μ^* be the outer measure generated by μ . Let A^* be the σ -algebra of μ^* measurable sets. Then $\mathcal{A} \subseteq A^*$ and μ extends to a measure $\bar{\mu}$ on \mathcal{A}^* .

Proof. We only need to show that $A \subseteq A^*$. Let $E \in A$ and let $A \subseteq X$. As before, we can assume that $\mu^*(A) < \infty$ and that we need only show that

$$\mu^*(A) > \mu^*(A \cap E) + \mu^*(A \cap E^c).$$

Let $\epsilon > 0$ and choose $\{F_n\}_{n \in \mathbb{N}} \subset \mathcal{A}$ such that

$$A \subseteq \bigcup_{n=1}^{\infty} F_n$$
 and $\sum_{n=1}^{\infty} \mu(F_n) \le \mu^*(A) + \epsilon$.

Note that

$$A \cap E \subseteq \bigcup_{n=1}^{\infty} E \cap F_n$$
 and $A \cap E^c \subseteq \bigcup_{n=1}^{\infty} E^c \cap F_n$.

It follows that

$$\mu^*(A \cap E) \le \sum_{n=1}^{\infty} \mu(E \cap F_n)$$
 and $\mu^*(A \cap E^c) \le \sum_{n=1}^{\infty} \mu(E^c \cap F_n)$

Hence

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \leq \sum_{n=1}^{\infty} \mu(E \cap F_n) + \sum_{n=1}^{\infty} \mu(E^c \cap F_n)$$
$$= \sum_{n=1}^{\infty} \mu(F_n) \leq \mu^*(A) + \epsilon$$

Since ϵ was arbitrary, we have $\mu^*(A \cap E) + \mu^*(A \cap E) \leq \mu^*(A)$. The remainder of the theorem follows from Caratheodory's Theorem.

Hahn Extension Theorem (Statement only)

Suppose that μ is a σ -finite measure on an algebra \mathcal{A} . Then there is a unique extension $\bar{\mu}$ to a measure on \mathcal{A}^* , the σ -algebra of all μ^* -measurable sets.

Monotone Convergence Theorem (only the 1st version)

If $\{f_n\}_{n=1}^{\infty} \subseteq \mathcal{M}^+(X,\mathcal{A})$ is such that $f_n \leq f_{n+1}$ for all $n \geq 1$ and $\lim_{n \to \infty} f_n(x) = f(x)$ then

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu$$

Proof. We know that $f \in \mathcal{M}^+(X, \mathcal{A})$ and

$$\int f_n \ d\mu \le \int f_{n+1} d\mu \le \int f \ d\mu$$

Hence $\lim_{n\to\infty}\int f_n\ d\mu\leq\int f\ d\mu$. Conversely, let $0<\alpha<1$ and let $\varphi\in\mathcal{M}^+(X,\mathcal{A})$ be simple with $0\leq\varphi\leq f$. For each $n\in\mathbb{N}$, let $A_n=\{x\in X|f_n(x)\geq\alpha\varphi(x)\}$. Then $A_n\in\mathcal{A}$, $A_n\subseteq A_{n+1}$ and $X=\bigcup_{n=1}^\infty A_n$. We have

$$\int_{A} \alpha \varphi \ d\mu \le \int_{A} f_n \ d\mu \le \int f_n \ d\mu$$

By the Monotone Convergence Theorem for measures, $\int \varphi \ d\mu = \lim_{n \to \infty} \int_{A_n} \varphi d\mu$ since $\lambda(E) = \int_E \varphi \ d\mu$ is a measure. Therefore

$$\alpha \int \varphi \ d\mu = \lim_{n \to \infty} \int_{A_n} \alpha \varphi \ d\mu \le \lim_{n \to \infty} \int f_n \ d\mu$$

Since $0 \le \alpha < 1$ was arbitrary, we can take $\alpha \to 1^-$ and conclude

$$\int \varphi \ d\mu \le \lim_{n \to \infty} \int f_n \ d\mu$$

Thus

$$\int f \ d\mu = \sup_{0 < \varphi < f} \int \varphi \ d\mu \le \lim_{n \to \infty} \int f_n \ d\mu$$

and the result is established.

Fatou's Lemma (Statement only)

If
$$\{f_n\}_{n=1}^{\infty} \subseteq \mathcal{M}^+(X, \mathcal{A})$$
 then

$$\int \liminf_{n \to \infty} f_n \ d\mu \le \liminf_{n \to \infty} \int f_n \ d\mu$$

Lebesgue Dominated Convergence Theorem

Let $\{f_n\}_{n=1}^{\infty}\subseteq \mathcal{L}(X,\mathcal{A},\mu)$. Assume that $f=\lim_{n\to\infty}f_n$ μ -a.e. If there exists an integrable function $g\in\mathcal{L}(X,\mathcal{A},\mu)$ such that $|f_n|\leq g$ for all $n\in\mathbb{N}$, then f is integrable and

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu$$

Proof. By redefining f_n , f if necessary, we may assume that $f = \lim_{n \to \infty} f_n$ everywhere. This shows that f is measurable. We have $|f| \le g$, so |f| is integrable. Hence f is also integrable.

Notice that $g + f_n \ge 0$. By Fatou's Lemma,

$$\int g \, d\mu + \int f \, d\mu = \int (g+f)d\mu$$

$$= \liminf_{n \to \infty} \int (g+f_n)d\mu$$

$$\leq \int \liminf_{n \to \infty} (g+f_n)d\mu$$

$$= \int g \, d\mu + \liminf_{n \to \infty} \int f_n \, d\mu$$

It follows that

$$\int f \ d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

On the other hand, $g - f_n \ge 0$, so by arguing as above, we see that

$$-\int f \ d\mu \le \liminf_{n \to \infty} \int -f_n d\mu = -\limsup_{n \to \infty} \int f_n \ d\mu$$

and as such

$$\limsup_{n \to \infty} \int f_n \ d\mu \le \int f \ d\mu.$$

Therefore $\int f d\mu = \lim_{n\to\infty} \int f_n d\mu$.

Completeness for L_p when $1 \le p < \infty$

Let $1 \le p < \infty$. Then $(L_p(X, \mathcal{A}, \mu), \|\cdot\|_p)$ is a Banach space.

Proof. Let $\{f_n\}_{n=1}^{\infty}\subseteq L_p(X,\mathcal{A},\mu)$ be a Cauchy sequence. We can find a subsequence $\{g_k\}$ of $\{f_n\}$ such that $\|g_{k+1}-g_k\|_p\leq 1/2^k$. Define, for all $x\in X$,

$$g(x) = |g_1(x)| + \sum_{k=1}^{\infty} |g_{k+1}(x) - g_k(x)|$$

Then $g \in \mathcal{M}^+(X, \mathcal{A})$, and by Fatou's Lemma,

$$\int |g|^p d\mu \le \liminf_{n \to \infty} \int \left(|g_1| + \sum_{k=1}^n |g_{k+1} - g_k| \right)^p d\mu.$$

Next, by Minkowski's Inequality, we get

$$\left(\int |g|^p d\mu\right)^{1/p} \le \liminf_{n \to \infty} \|g_1\|_p + \sum_{k=1}^n \|g_{k+1} - g_k\|_p \le \|g_1\|_p + 1 < \infty$$

Let $E = \{x \in X : g(x) < \infty\}$. Then it follows from the above calculations that $\mu(X \setminus E) = 0$. Hence

$$|g_1(x)| + \sum_{k=1}^{\infty} |g_{k+1}(x) - g_k(x)|$$

converges to a finite number μ -a.e. Let

$$f(x) = \begin{cases} g_1(x) + \sum_{k=1}^{\infty} g_{k+1}(x) - g_k(x) & x \in E \\ 0 & x \notin E \end{cases}$$

Note that since the series is telescoping, this actually shows that $g_k \to f \mu$ —a.e. We also notice that $|g_k(x)| \le g(x)$ for all $x \in X$. The Lebesgue Dominated Convergence Theorem (LDCT) shows us that

$$\int |f|^p d\mu = \lim_{k \to \infty} \int |g_k|^p d\mu \le \int |g|^p d\mu < \infty$$

Therefore $f \in L_p(X, \mathcal{A}, \mu)$. Since $|f| \leq g$, we have $|f - g_k| \leq 2|g|$ and again by the LDCT, $0 = \lim_{k \to \infty} \int |f - g_k|^p d\mu$ since $g_k \to f$ a.e. Therefore, the subsequence $\{g_k\}$ converges to f in $L_p(X, \mathcal{A}, \mu)$. It follows that $\{f_n\}$ converges to f in $L_p(X, \mathcal{A}, \mu)$.

Egoroff's Theorem (Statement Only)

Let (X, \mathcal{A}, μ) be a finite measure space and let $\{f_n\}$ be a sequence of measurable real-valued functions which converge almost everywhere to a real-valued measurable function f. Then $f_n \to f$ almost uniformly.

Hahn Decomposition Theorem (Statement Only)

Let μ be a signed measure on (X, \mathcal{A}) . Then there is a positive set $A \in \mathcal{A}$ and a negative set $B \in \mathcal{A}$ so that $X = A \cup B$ and $A \cap B = \emptyset$.

Jordan Decomposition Theorem for Signed Measures (Statement only)

Let μ be a signed measure on (X, \mathcal{A}) . Then there exist two mutually singular positive measures μ^+ and μ^- such that

$$\mu = \mu^{+} - \mu^{-}$$

Furthermore, if λ and ν are two positive measures with

$$\mu = \lambda - \nu$$

the for each $E \in \mathcal{A}$ we have

$$\lambda(E) \ge \mu^+(E)$$
 and $\nu(E) \ge \mu^-(E)$

Finally, if $\lambda \perp \nu$, then $\lambda = \mu^+$ and $\nu = \mu^-$.

Radon-Nikodym Theorem (Statement Only)

Let λ and μ be σ -finite measures on (X, \mathcal{A}) . Suppose that λ is absolutely continuous with respect to μ . Then there exists $f \in \mathcal{M}^+(X, \mathcal{A})$ such that

$$\lambda(E) = \int_{E} f \ d\mu$$

for every $E \in \mathcal{A}$. Moreover f is uniquely determined μ -almost everywhere.

Lebesgue Decomposition Theorem (Proof of Existence Only)

Let λ and μ be σ -finite measures on (X, \mathcal{A}) . Then there exists two measures λ_1 and λ_2 on (X, \mathcal{A}) such that $\lambda = \lambda_1 + \lambda_2$, $\lambda_1 \perp \mu$ and $\lambda_2 \ll \mu$. Moreover, these measures are unique.

Proof. Let $\nu = \lambda + \mu$. Then clearly ν is σ -finite, $\lambda \ll \nu$ and $\mu \ll \nu$. It follows that there are functions $f, g \in \mathcal{M}^+(X, \mathcal{A})$ such that

$$\lambda(E) = \int_E f \ d\nu \quad \text{and} \quad \mu(E) = \int_E g \ d\nu$$

for every $E \in \mathcal{A}$. Let

$$A = \{x \in X : g(x) = 0\}$$
 and $B = \{x \in X : g(x) > 0\}.$

Then $\{A, B\}$ is a partition of X. Let

$$\lambda_1(E) = \lambda(E \cap A)$$
 and $\lambda_2(E) = \lambda(E \cap B)$

for every single $E \in \mathcal{A}$. Clearly $\lambda = \lambda_1 + \lambda_2$. Since

$$\mu(A) = \int_A g \ d\nu = \int_A 0 \ d\nu$$

we have $\lambda_1 \perp \mu$. If $\mu(E)=0$ then $\int_E g \ d\nu=0$ so g(x)=0 for $\nu-$ almost everywhere in E. It follows that $\nu(E\cap B)=0$ and hence that

$$\lambda_2(E) = \lambda(E \cap B) = 0$$

since $\lambda \ll \nu$. That is $\lambda_2 \ll \mu$.

Lebesgue's Differentiation Theorem (Statement Only)

Let $f:[a,b]\mapsto \mathbb{R}$ be increasing. Then f is differentiable almost everywhere on $[a,b],\ f'$ is measurable, integrable and

$$\int_{[a,b]} f' \, dm \le f(b) - f(a)$$

FTC for Absolutely Continuous Functions (Statement Only)

A function $F:[a,b] \mapsto \mathbb{R}$ is of the form

$$F(x) = F(a) + \int_{a}^{x} g(t) dt$$

for some integrable function g if and only if F is absolutely continuous. Moreover, in this case F'(x) = g(x) a.e.

Riesz Representation Theorem I for $L_p(X,\mu)^*$ where $1 \le p < \infty$ (Statement only)

Let $\Gamma \in L_p(X,\mu)^*$ where $1 \le p < \infty$ and μ is σ -finite. Then if $\frac{1}{p} + \frac{1}{q} = 1$, there exists a unique $g \in L_q(X,\mu)^*$ such that

$$\Gamma(f) = \int_X fg \ d\mu = \phi_g(f)$$

Moreover, $\|\Gamma\| = \|g\|_q$.

Riesz Representation Theorem II for $L_p(X, \mu)^*$ where 1 (Statement only)

Let $\Gamma \in L_p(X,\mu)^*$ where $1 . Then if <math>\frac{1}{p} + \frac{1}{q} = 1$, there exists a unique $g \in L_q(X,\mu)^*$ such that

$$\Gamma(f) = \int_X fg \ d\mu$$

for all $f \in L_p(X, \mu)$. Moreover, $\|\Gamma\| = \|g\|_q$.

Riesz Representation Theorem for $C([a,b])^*$ (Statement only)

Let $\Gamma \in C([a,b])^*$. Then there exists a unique finite signed measure μ on the Borel subsets of [a,b] such that

$$\Gamma(f) = \int_{[a,b]} f \ d\mu$$

for each $f \in C([a, b])$. Moreover, $\|\Gamma\| = |\mu|([a, b])$.

Product Measure Theorem (Statement only)

Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be measure spaces. Then there exists a measure π on $(X \times Y, \mathcal{A} \times \mathcal{B})$ such that $\pi(A \times B) = \mu(A)\lambda(B)$. Moreover, if μ and λ are σ -finite, then π is unique and σ -finite.

In the case where μ and λ are σ -finite, we denote the uniquely obtained measure as

$$\pi = \mu \times \lambda$$

and call the measure the product of μ and λ .

Tonelli's Theorem (Statement Only)

Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ -finite measure spaces. Let $F: Z = X \times Y \mapsto [0, \infty]$ be measurable. Then the functions defined by $f(x) = \int_Y F_x \ d\lambda$ and $g(y) = \int_X F^y \ d\mu$ are measurable and $\int_X f \ d\mu = \int_Z F \ d\pi = \int_Y g \ d\lambda$ where $\pi = \mu \times \lambda$. That is to say,

$$\int_X \left(\int_Y F(x, y) d\lambda(y) \right) d\mu(x) = \int_Z F d\pi = \int_Y \left(\int_X F(x, y) d\mu(x) \right) d\lambda(y)$$

Fubini's Theorem (Statement Only)

Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ -finite measure spaces and let $\pi = \mu \times \lambda$. If F is integrable with respect to π on $Z = X \times Y$, then the extended real valued functions defined almost everywhere by $f(x) = \int_Y F_x \ d\lambda$ and $g(y) = \int_X F^y \ d\mu$ have finite integrals and $\int_X f \ d\mu = \int_Z F \ d\pi = \int_Y g \ d\lambda$. That is to say,

$$\int_X \left(\int_Y F(x,y) d\lambda(y) \right) d\mu(x) = \int_Z F \ d\pi = \int_Y \left(\int_X F(x,y) d\mu(x) \right) d\lambda(y)$$